De introductie van machine learning in het dagelijks leven

Nieuws
31-01-2025
Geert-Jan Houben
We horen voortdurend over de 'AI-revolutie' en 'digitale transformatie' en zien overal om ons heen op AI gebaseerde robots en software. Maar hoe ontwikkelen deze innovaties zich van fundamenteel onderzoek tot onderdeel van het dagelijks leven? Geert-Jan Houben bespreekt deze vraag met de twee codirecteuren van de ELLIS Unit Delft: Frans Oliehoek en Jens Kober.

Van academisch onderzoek tot toepassingen in de praktijk

We horen voortdurend over de 'AI-revolutie' en 'digitale transformatie' en zien overal om ons heen op AI gebaseerde robots en software. Deze ontwikkelingen zijn het resultaat van de snelle innovaties in het vakgebied machine learning, zoals zelfrijdende auto’s, ChatGPT, DeepSeek en zelfs het voorspellen van extreme weersomstandigheden. Maar hoe ontwikkelen deze innovaties zich van fundamenteel onderzoek tot onderdeel van het dagelijks leven? Geert-Jan Houben bespreekt deze vraag met de twee codirecteuren van de ELLIS Unit Delft: Frans Oliehoek en Jens Kober.

De rol van 'machine learning' binnen 'artificial intelligence (AI)'

“Het is binnen AI traditie om problemen als zoek- of optimalisatieprobleem te formuleren. Dat houdt wel in dat we weten wat we proberen te optimaliseren of dat we beschikken over de juiste data om waarschijnlijkheden in te schatten. Maar in veel gevallen weten we dat niet of zijn deze data niet voorhanden," legt Frans Oliehoek uit, universitair hoofddocent aan de faculteit Elektrotechniek, Wiskunde en Informatica (EWI).

“In dat geval komt machine learning (ML) in beeld als deelgebied van AI. ML haalt met behulp van algoritmen informatie uit data, waardoor onze oplossingen beter aansluiten bij alledaagse problemen. Zo kan ML worden ingezet om zeldzame fenomenen als extreme weersomstandigheden te voorspellen. Door patronen te vinden in grote of complexe datasets bieden ML-modellen nieuwe inzichten in situaties waarin traditionele methoden soms tekortschieten."

"Bovendien maakt ML inmiddels een integraal en fundamenteel onderdeel uit van veel AI-systemen. Zo blijken op regels gebaseerde modellen in zelfrijdende auto's niet te voldoen in complexe en onvoorspelbare omgevingen als drukke steden. Maar via ML kunnen de systemen leren van observaties en zich aanpassen aan dit soort onvoorspelbare scenario's," Jens Kober, universitair hoofddocent aan de faculteit Mechanical Engineering (ME), voegt daaraan toe: "Een van de grootste pluspunten van ML is dat het mogelijk wordt taken als bijvoorbeeld gezichtsherkenning te automatiseren. Die werden voorheen handmatig uitgevoerd omdat we ze onvoldoende begrijpen om expliciet oplossingen te kunnen programmeren."

[....]

Lees verder op: TU Delft

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Top vacature
De Nederlandsche Bank
3.480 - 6.500
Junior, Medior
Amsterdam
Zie toe op de integere bedrijfsvoering van de financiële sector als toezichthouder financieel economische criminaliteit bij DNB.
Improving Assets
Marktconform
Senior, Medior, Junior
Nederland
Improving Assets is dé specialist in het uitvoeren en verbeteren van KYC-processen. Wij werken uitsluitend met professionals die wat toevoegen. Iets extra’s komen brengen. Als je, net als wij, gelooft...
Meer lezen
Pensioenfonds Horeca & Catering
5.000 - 6.900
Senior, Medior
Zoetermeer
Wil je jezelf ontwikkelen binnen een innovatieve en duurzame pensioenuitvoeringsorganisatie? Het pensioenstelsel in Nederland is namelijk volop in beweging! De omgeving typeert zich als dynamisch; je hebt te maken met...
Top vacature
Gemeente Maastricht
5 - 7
Medior, Senior
Maastricht
Je zult je vooral richten op de audit- en controlewerkzaamheden benodigd voor de rechtmatigheidsverantwoording, waarbij je betrokken bent bij het jaarlijks op te stellen uitvoeringscontroleplan en bent verantwoordelijk voor het...